NON-SMALL CELL LUNG CANCER – 2014

NEWER APPROACHES:
GENETIC ALTERATIONS AND IMMUNE CHECKPOINT STRATEGIES

Richard J. Gralla, MD
Albert Einstein College of Medicine
New York, New York
SYSTEMIC APPROACHES TO ADVANCED CANCER

2014

CHEMOTHERAPY

BOTH

MOLECULARLY TARGETED APPROACHES
HALLMARKS OF CANCER

- Evading apoptosis
- Sustained angiogenesis
- Limitless replicative potential
- Insensitivity to anti-growth signals
- Tissue invasion and metastasis
- Self-sufficiency in growth signals

Positions of Mutations Detected in HER1/EGFR Tyrosine Kinase Domain in NSCLC

A Couple of Targets

▲ Tumor with point mutation (amino acid substitution)
★ Tumor with in-frame deletion

TM = transmembrane
Survival by Smoking Status

<table>
<thead>
<tr>
<th>Smoking Status</th>
<th>Erlotinib</th>
<th>Placebo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Never Smokers</td>
<td>24.7%</td>
<td>2.9%</td>
</tr>
<tr>
<td>Response Rate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Median Survival</td>
<td>12.3 mos</td>
<td>5.6 mos</td>
</tr>
<tr>
<td>HR=0.42</td>
<td></td>
<td>(95% CI 0.28 to 0.64)</td>
</tr>
<tr>
<td>Current/Ex-Smokers</td>
<td>3.9%</td>
<td><1%</td>
</tr>
<tr>
<td>Response Rate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Median Survival</td>
<td>5.5 mos</td>
<td>4.6 mos</td>
</tr>
<tr>
<td>HR=0.87</td>
<td></td>
<td>(95% CI 0.71 to 1.05)</td>
</tr>
</tbody>
</table>

META-ANALYSIS 2014:
Impact of EGFR-TKIs on Survival and PFS in NSCLC based in Mutation + Patients Only: Clinical and Genetic Correlations

• Publications from 2004 to 2014
• Randomized comparisons of 1st Line treatment of Chemotherapy versus EGFR TKIs
• 7 Trials which included 1649 patients
• Exon 19 deletions & Exon 21 L858 substitutions were >90% of the mutations
• Analyzed for differences among subgroups, including:
 – Exon 19 versus Exon 21 mutations
 – Smoking History
 – Gender
 – Also: Performance Status, Age, Tumor Histology, Ethnic origin

META-ANALYSIS 2014: Impact of EGFR-TKIs on PFS in NSCLC based on EGFR Mutational Status: Results

<table>
<thead>
<tr>
<th>EGFR TKI versus CHEMOTHERAPY:</th>
<th>HR: 0.37 (95% CI: .33 - .43)</th>
</tr>
</thead>
<tbody>
<tr>
<td>EXON 19 versus EXON 21</td>
<td></td>
</tr>
<tr>
<td>EXON 19 - HR: 0.25</td>
<td>EXON 21 - HR: 0.48 (P < 0.001)</td>
</tr>
<tr>
<td>SMOKING HISTORY</td>
<td></td>
</tr>
<tr>
<td>NEVER SMOKERS - HR: 0.32</td>
<td>SMOKERS - HR: 0.51 (P < 0.0008)</td>
</tr>
<tr>
<td>GENDER</td>
<td></td>
</tr>
<tr>
<td>WOMEN - HR: 0.33</td>
<td>MEN - HR: 0.45 (P < 0.03)</td>
</tr>
<tr>
<td>AGE, ETHNIC ORIGIN, HISTOLOGY*, PS*</td>
<td>No Significant Differences *</td>
</tr>
</tbody>
</table>

* But > 94% of pts PS 0,1 and adenocarcinoma
META-ANALYSIS 2013 and 2014: Impact of EGFR-TKIs on Survival and PFS in NSCLC based on EGFR Mutations: Conclusions

- These are the largest meta-analyses in these settings
- The results establish for the first time that the impact of EGFR-TKIs is the same in either First- or Second-line settings
- Nearly all of the benefit of EGFR-TKI is in patients who harbor activating EGFR mutations (mutation positive status)
 - Valid for First-Line, Second-Line, and Maintenance settings
- EGFR-TKIs plus Chemo is not better than EFGR-TKIs alone

For EGFR mutation + patients:
- Large PFS benefits are seen; survival benefit not found since BR.21
 - With > 90% of patients ‘crossing-over,’ this result is not surprising
- Among patients with mutations, major differences are found depending on the mutation and on common clinical factors

EGFR-TKI Resistance Pathways

Reference: Yu et al, CCR 2013
<table>
<thead>
<tr>
<th>EGFR TKIs AND TARGET AFFINITY</th>
<th>ERLOTINIB</th>
<th>AFATINIB</th>
<th>CO 1686</th>
</tr>
</thead>
<tbody>
<tr>
<td>EGFR wt</td>
<td>++</td>
<td>+++</td>
<td>+</td>
</tr>
<tr>
<td>EGFR mutated</td>
<td>++++</td>
<td>+++</td>
<td>+++</td>
</tr>
<tr>
<td>Resistance Mechanism T790M</td>
<td>--</td>
<td>++</td>
<td>+++</td>
</tr>
</tbody>
</table>
Phase I – II: CO-1686 in *EGFR* mutant NSCLC

Best response in Phase 1 and early Phase 2 expansion cohort patients

Centrally confirmed T790M+ patients within therapeutic dose range (N=40)

<table>
<thead>
<tr>
<th>Dose Level</th>
<th>ORR to date: 58%</th>
</tr>
</thead>
<tbody>
<tr>
<td>900 mg BID FB / 500 mg HBr</td>
<td>Ongoing</td>
</tr>
<tr>
<td>750 mg BID HBr</td>
<td></td>
</tr>
<tr>
<td>625 mg BID HBr</td>
<td></td>
</tr>
<tr>
<td>1000 mg BID HBr</td>
<td></td>
</tr>
</tbody>
</table>

Reference: Sequist *Proc ASCO* 2014, Abstract #8010
EGFR TKIs: Toxicities

<table>
<thead>
<tr>
<th></th>
<th>Any Grade 3</th>
<th>Diarrhea</th>
<th>Rash</th>
<th>Lung (ILD)</th>
<th>Hyperglycemia</th>
</tr>
</thead>
<tbody>
<tr>
<td>Erlotinib</td>
<td>57%</td>
<td>80%</td>
<td>1%</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>Afatinib / Cetuximab</td>
<td>71%</td>
<td>97%</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>CO-1686</td>
<td>23%</td>
<td>4%</td>
<td>NR</td>
<td>22%</td>
<td></td>
</tr>
<tr>
<td>AZD9291</td>
<td>20%</td>
<td>27%</td>
<td>3%</td>
<td>1%</td>
<td></td>
</tr>
<tr>
<td>HM61713</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>NR</td>
<td></td>
</tr>
</tbody>
</table>

NR indicates not reported.
NON-SMALL CELL LUNG CANCER
- Incidence and Smoking Status -

Smoking Status and Lung Cancer

- Smokers
- Non-Smokers
NON-SMALL CELL LUNG CANCER
- Identified Mutations in Non-Smokers with Adenocarcinoma -

Mutations

- EGFr: 44%
- EML4-ALK: 24%
- Kras: 10%
- Other: 8%
- Unknown: 14%

MG Kris. Targeted Therapy in Lung Cancer Meeting. February 2010
EML4-ALK Fusion Oncogene

“Echinoderm Microtubule-Associated Protein-Like 4 / Anaplastic Lymphoma Kinase”

Frequency in NSCLC:
- 1% - 7% of Asians
- 13% of unselected
- 22% of never / light smokers
- 33% of never / light smokers with wild-type *EGFR*

Rapid progress in targeting *ALK*

Identification of *ALK* rearrangements in lung cancers\(^1\)

Accelerated approval for *crizotinib*\(^2,3\)

05/2014: Accelerated approval for *ceritinib* in acquired resistance\(^4\)

07/2014: Approval in Japan for *alectinib*\(^5,6\)

1) Soda *et al*, Nature 2007
2) Kwak *et al*, NEJM 2010
3) Shaw *et al*, NEJM 2013
4) Shaw *et al*, NEJM 2014
5) Seto *et al*, Lancet 2013
6) Nakagawa, *et al* ASCO 2014, #8103
Clinical Activity of Crizotinib in ALK-Positive NSCLC

- N = 82, mean age 51
- 52% male
- 56% Caucasian,
- 35% Asian
- 76% never smokers
- 23% former smokers
- Adenocarcinoma 96%

Response Rate = 57%
PFS at 6 mo = 72%

Treatment-related Adverse Events:

- Grade 1 events in 40%-52% of patients: nausea, diarrhea, vomiting, vision disturbance (light accommodation)
- Grade 3/4 ALT elevation in 6%
- Rarer (all trials): Pulmonary Toxicity

Kwak, et al. NEJM 2010
Crizotinib Phase III – Second Line - versus Docetaxel / Pemetrexed (PFS)

Shaw et al, *NEJM* 2013

Crizotinib 250 mg bid orally

Hazard ratio for progression or death in the crizotinib group, 0.49 (95% CI, 0.37–0.64)
P<0.001

Crizotinib median PFS = 7 months
Evaluation of Crizotinib as First-line Therapy

Crizotinib (N = 172)
- Events, n: 100 (58%)
- Median PFS: 10.9 mos
- HR (95% CI): 0.45 (0.35–0.60)
- *p* < 0.0001

Pemetrexed + Cis or Carbo (N = 172)
- Events, n: 137 (80%)
- Median PFS: 7.0 mos

Mok et al, *Proc ASCO* 2014
HALLMARKS OF CANCER

- Evading apoptosis
- Sustained angiogenesis
- Self-sufficiency in growth signals
- Limitless replicative potential
- Insensitivity to anti-growth signals
- Tissue invasion and metastasis

NON-SMALL CELL LUNG CANCER
- Identified Mutations in Non-Smokers with Adenocarcinoma -

HER2 BRAF AKT1 PIK3CA

Mutations

- 14% EGFr
- 44% Other
- 24% EML4-ALK
- 10% Unknown
- 8% Kras
- PD-1 not favoring Adeno or Non-Smokers

Programmed Cell Death protein 1, PD-1, cell surface protein encoded by PDCD1 gene

Targeting immunosuppression by blocking the PD-L1 / PD-1 pathway

Adaptive Tumor Expression of PD-L1

IFNγ-mediated up-regulation of tumor PD-L1

PD-1/ PD-L1 - mediated *Inhibition* of tumor cell killing

The PD-1/PD-L1 Immune Checkpoints

Tumor cell

T-cell

Dendritic cell

PD-L1
MHC
Peptide
T-cell receptor

PD-1

CD28
B7.1/2
MHC
Peptide
T-cell receptor

CTLA-4
B7.1/2

TARGETS
T-cell checkpoint inhibitors in NSCLC: PD-1 / PD-L1 Targeted Monoclonal Antibodies - Preliminary Efficacy Data -

<table>
<thead>
<tr>
<th>Drug</th>
<th>Target</th>
<th>N *</th>
<th>Response Rate</th>
<th>PFS > 24wks</th>
<th>1 year Survival</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nivolumab¹</td>
<td>PD-1</td>
<td>129</td>
<td>17-24%</td>
<td>27-35%</td>
<td>32-56%</td>
</tr>
<tr>
<td>Pembrolizumab²</td>
<td>PD-1</td>
<td>217</td>
<td>18-20%</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>MEDI 4736³⁴</td>
<td>PD-L1</td>
<td>58</td>
<td>16%</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>MPDL 3280A⁶</td>
<td>PD-L1</td>
<td>41</td>
<td>22%</td>
<td>46%</td>
<td>NR</td>
</tr>
</tbody>
</table>

¹ Brahmer ASCO 2014, #8112
² Garon, ASCO 2014, #8020
³ Segal, ASCO 2014, #3002
⁴ Brahmer, ASCO 2014, #8021
⁵ Spigel, ASCO 2013, #8008

* All as Second-Line Treatment
Pembrolizumab Treatment-Related Adverse Events

Adverse Events of Any Grade, Incidence >5%

<table>
<thead>
<tr>
<th>Treatment-Related Adverse Event, n (%)</th>
<th>N = 45</th>
</tr>
</thead>
<tbody>
<tr>
<td>Any</td>
<td>36 (80%)</td>
</tr>
<tr>
<td>Fatigue</td>
<td>10 (22%)</td>
</tr>
<tr>
<td>Pruritus</td>
<td>6 (13%)</td>
</tr>
<tr>
<td>Hypothyroidism</td>
<td>4 (9%)</td>
</tr>
<tr>
<td>Dermatitis acneiform</td>
<td>3 (7%)</td>
</tr>
<tr>
<td>Diarrhea</td>
<td>3 (7%)</td>
</tr>
<tr>
<td>Dyspnea</td>
<td>3 (7%)</td>
</tr>
<tr>
<td>Rash</td>
<td>3 (7%)</td>
</tr>
</tbody>
</table>

Grade 3-4 Adverse Events

<table>
<thead>
<tr>
<th>Treatment-Related Adverse Event, n (%)</th>
<th>N = 45</th>
<th>Resulted in Discontinuation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blood creatine phosphokinase increased (Gr 4)</td>
<td>1 (2%)</td>
<td>No</td>
</tr>
<tr>
<td>Pericardial effusion (Gr 3)</td>
<td>1 (2%)</td>
<td>No</td>
</tr>
<tr>
<td>Pneumonitis (Gr 3)</td>
<td>1 (2%)</td>
<td>Yes</td>
</tr>
<tr>
<td>Acute kidney injury (Gr 2)</td>
<td>1 (2%)</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Reference: Rizvi et al *Proc ASCO* 2014
Is PD-L1 a useful biomarker in NSCLC?

<table>
<thead>
<tr>
<th>Drug/ Sponsor</th>
<th>Nivolumab BMS</th>
<th>Pembrolizumab Merck</th>
<th>MPDL3280A Genentech</th>
<th>MEDI4736 MedImmune</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assay</td>
<td>28-8</td>
<td>22C3</td>
<td>???</td>
<td>SP263</td>
</tr>
<tr>
<td>Cells scored</td>
<td>Tumor cell membrane</td>
<td>Tumor cell and stroma</td>
<td>Infiltrating immune cells [recently changed]</td>
<td>???</td>
</tr>
<tr>
<td>Tissue</td>
<td>Archival</td>
<td>Recent</td>
<td>Arch./Recent</td>
<td>Arch./Recent</td>
</tr>
<tr>
<td>Setting</td>
<td>1<sup>st</sup> Line</td>
<td>2<sup>nd</sup> Line</td>
<td>1<sup>st</sup> Line</td>
<td>2<sup>nd</sup> Line</td>
</tr>
<tr>
<td>Cut-point</td>
<td>1%</td>
<td>1%</td>
<td>5%</td>
<td>1%</td>
</tr>
</tbody>
</table>

For NVO
- Topalian, NEJM 2012
- Grosso, ASCO 2013, #3016ne
- Brahmer, ASCO 2014, #8112
- Gettinger, ASCO 2014, #8024

For Pembrol
- Daud, AACR 2014
- Ghandi, AACR 2014
- Rizvi, ASCO 2014, #8009
- Garon, ASCO 2014, #8020

For MPDL3280A
- Hamid, ASCO 2013, #9010
- Herbst, ASCO 2013, #3000
- Powderly, ASCO 2013, #3001
- Spigel, ASCO 2013, #8008

For MEDI4736
- Segal, ASCO 2014, #3002
- Brahmer, ASCO 2014, #8021
T-cell checkpoint inhibitors in NSCLC: PD-1 / PD-L1 Targeted Monoclonal Antibodies - Observations -

• Several agents targeting this pathway are under investigation
• Responses have been reported, in 15% - 25% of patients given these agents as monotherapy
• Activity does not favor only patients who are non-smokers or have adenocarcinoma
• It is not yet clear if tumor PD-L1 over-expression is a predictor of antitumor activity
• It is not yet clear whether targeting PD-1 or PD-L1 is a better approach in terms of efficacy or toxicity
The effect of Chemotherapy and novel agents in Non-small Cell Lung Cancer

The Magnitude of Various Interventions on Survival

- Relative Reduction in the Risk of Death: **25% to 50%:**
 - Combination Chemotherapy vs Supportive Care (17 trials)*
 - Chemotherapy vs Supportive Care - 2nd Line (4 trials)**

- Relative Reduction in the Risk of Death: **10% to 25%:**
 - Two agents vs One (65 Trials)**
 - Cisplatin vs Carboplatin (5 Trials)*
 - Cisplatin regimens vs non-platinum regimens (14 Trials)*
 - Adjuvant chemotherapy vs no further treatment (12 Trials)*

- Relative Reduction in the Risk of Death: **5% to 10%:**
 - Bevacizumab + Chemotherapy vs Chemotherapy (1 of 2 Trials)
 - Cetuximab + Chemotherapy vs Chemotherapy (1 of 2 Trials)

* Also 2 or more meta-analyses ** Also 1 meta-analysis
NON-SMALL CELL LUNG CANCER
Treatment Considerations in 2014

• We now have at least three distinct treatment strategies:
 - Chemotherapy
 - Genetic abnormalities: Mutations / Rearrangements
 - Immune Checkpoint Inhibition

• Newer pathways have the potential to identify individual patients likely to respond to treatment

• Chemotherapy remains the largest contributor to survival benefit for the whole population

• Much research focuses on resistance pathways

• Toxicity profiles vary, but much work needs to be done

• Is there reason to expect that only 3 distinct pathways or strategies are possible?